

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

PROLOG

OUTLINE

 What is Prolog?

 Language syntax

 Rules

 Questions

 Backtracking

 Conclusions

WHAT IS PROLOG?

 Logic programming is a programming language

paradigm in which logical assertions are viewed as

a program

 Prolog is described as a series of logical assertions

or it is a logic-based language

 With a few simple rules, information can be

analyzed.

 Representation in logic

 ∀ x : pet(x) Λ small (x)  apartment(x)

 ∀ x : cat(x) ⋁ dog(x)  pet(x)

 ∀ x : poodle(x)  dog(x) Λ small(x)

 Poodle(abs)

 Representation in PROLOG

 Apartment (x) :- pet(x), small(x)

 Pet (x) :- dog (x)

 Dog (x) :- poodle (x)

 Small(x) :- poodle (x)

 Poodle(abs)

SYNTAX

 .pl files contain lists of clauses

Clauses can be either facts or rules

male(bob).

male(harry).

child(bob,harry).

son(X,Y):-

 male(X),child(X,Y).

Predicate, arity 1 (male/1)

Terminates a clause

Indicates a rule

“and”

Argument to predicate

RULES

 Rules combine facts to increase knowledge of the
system

son(X,Y):-

 male(X),child(X,Y).

 X is a son of Y if X is male and X is a child of Y

QUESTIONS

 In Prolog the queries are statements called directive
 Syntactically, directives are clauses with an empty

left-hand side.
Example : ? - grandparent(X, W).
This query is interpreted as : Who is a grandparent of

X ?

 The result of executing a query is either success or
failure

 Success, means the goals specified in the query
holds according to the facts and rules of the
program.

 Failure, means the goals specified in the query does
not hold according to the facts and rules of the
program

 Ask the Prolog virtual machine questions

 Composed at the ?- prompt

 Returns values of bound variables and yes or no

?- son(bob, harry).

yes

?- king(bob, france).

no

QUESTIONS [CONT’D]

Can bind answers to questions to variables

Who is bob the son of? (X=harry)

?- son(bob, X).

Who is male? (X=bob, harry)

?- male(X).

 Is bob the son of someone? (yes)

?- son(bob, _).

No variables bound in this case!

BACKTRACKING

 How are questions resolved?

?- son(X,harry).

 Recall the rule:

son(X,Y):-

 male(X),child(X,Y).

BACKTRACKING [CONT’D]

 Y is bound to the atom “harry” by the question.

male(X) child(X,Y)

X=harry
Y=harry

child(harry,harry)?

child(bob,harry)?
X=bob
Y=harry

no

yes - succeeds

APPLICATIONS

 Intelligent systems

 Complicated knowledge databases

 Natural language processing

 Logic data analysis

CONCLUSIONS

Strengths:

Strong ties to formal logic

Many algorithms become trivially simple to

implement

Weaknesses:

Complicated syntax

Difficult to understand programs at first sight

ISSUES

 What applications can Prolog excel at?

 Is Prolog suited for large applications?

 Would binding the Prolog engine to another

language be a good idea?

FORWARD V/S BACKWARD CHAINING:

 Infer means " to derive as a conclusion from facts or
premises".
 There are 2 common rules for deriving new facts from
rules and known facts.These are
 Modus Ponens and Modus Tollens.

 7.1.1 MODUS PONENS

 *most common inference strategy
 *simple ,reaoning based on it is easily understood.

 The rule states that when A is known to be true and if
a rule states " If A then B "
 it is valid to conclude that B is true.

 7.1.2 MODUS TOLLENS

 When B is false, rule If A, then B

 then A is false.

 E.g: Rule : IF Ahmet's CAR IS DIRTY

 THEN Ahmet HAS BEEN DRIVING

OUTSIDE ANKARA

 Given fact : Ahmet has not been outside Ankara.

 New rule : Ahmet car is not dirty.

 This conclusion seems quite obvious but cannot be

reached by most expert systems. Because they use

modus ponens for deriving new facts from rules.

 Inference engine performs 2 major tasks:

1) examines existing facts and rules and adds new

facts when possible

2) decides the order in which inferences are made.

TWO REFERENCING METHODS:

 Forward Chaining

 Backward chaining

 Forward chaining : also called data driven.

It starts with the facts, and sees what rules apply.

 Backward chaining : also called goal driven.

It starts with something to find out, and looks for rules

that will help in answering it.

Problem: Does situation Z exists or not ?

FORWARD CHAINING ALGORITHM

 Given m facts F1,F2,....,Fm? N RULES R1,R2,......Rn

 repeat for i ?- 1 to n do

 if one or more current facts match the antecedent of Ri

then

 1) add the new fact(s) define by the consequent

2) flag the rule that has been fired

3) increase m until no new facts have been produced.

until no new facts have been produced.

BACKWARD CHAINING:

 With this inference method the system starts with what it

wants to prove, e.g.,that situation Z exists, and only

executes rules that are relavent to establishing it.

Figure following shows how bacward chaining would

work using the rules from the forward chaining example.

BACKWARD CHAINING ALGORITHM:

‡ Prove goal G :

 If G is in the initial facts , it is proven.

 Otherwise, find a rule which can be used to

conclude G, and try to prove each of that rule's

conditions.

COMPONENT OF RULE BASED SYSTEM

WORKING MEMORY:

RULE BASE



RULE BASE (CONT…)

INTERPRETER

INTERPRETER (CONT…)

