RBALAALIARVA
WRVIN/AAYTIT/AR N

| College of Engineering

INTELLIGENT SYSTEMS (CSE-303-F)
Section A

PROLOG

OUTLINE

What is Prolog?
Language syntax
Rules

Questions
Backtracking
Conclusions

WHAT IS PROLOG?

Logic programming is a programming language
paradigm in which logical assertions are viewed as
a program

Prolog is described as a series of logical assertions
or it is a logic-based language

With a few simple rules, information can be
analyzed.

Representation in logic

Vv x : pet(x) A small (x) 2 apartment(x)
Vv X : cat(x) V dog(x) = pet(x)
V X : poodle(x) = dog(x) A small(x)
Poodle(abs)

Representation in PROLOG
Apartment (X) :- pet(x), small(x)
Pet (X) :- dog (x)
Dog (X) :- poodle (x)
Small(x) :- poodle (x)
Poodle(abs)

SYNTAX

.pl files contain lists of clauses
Clauses can be either facts or rules

e 5 I?redlcate, arlty_l (male/1)
—lerminates a clause
male (harry) .

Child(bob,harry)/ Argument to predicate
son(X,Y) :— |
male (X),child (X,Yy) . inhdicates a rule

\ \\andn

RULES

Rules combine facts to increase knowledge of the
system

son(X,Y) :-
male (X),chi1ld(X,Y).

XisasonofYif Xismale and X is a child of Y

QUESTIONS

In Prolog the queries are statements called directive

Syntactically, directives are clauses with an empty
left-hand side.

Example : ? - grandparent(X, W).

Tf;&s?query IS Interpreted as : Who is a grandparent of

The result of executing a query Is either success or
failure

Success, means the goals specified in the query
holds according to the facts and rules of the
program.

Failure, means the goals specified in the query does
not hold according to the facts and rules of the
program

Ask the Prolog virtual machine questions

Composed at the ?- prompt
Returns values of bound variables and yes or no

?— son (bob, harry).

ves
?— king(bob, france).

no

QUESTIONS [CONT D]

Can bind answers to questions to variables
Who is bob the son of? (X=harry)
?— son (bob, X).
Who is male? (X=bob, harry)
?— male (X) .
Is bob the son of someone? (yes)
?— son (bob,) .

No variables bound in this case!

BACKTRACKING

How are guestions resolved?
?- son(X,harry).

Recall the rule:
son(X,Y) : -
male (X),child(X,Y).

BACKTRACKING [CONT D]}

Y is bound to the atom “harry” by the question.

male(X) child(X,Y)

X= harry//. child(harry,harry)?

Y= harV no

X=bob
— 5
Y=harry child(bob,harry): ves - succedds

APPLICATIONS

Intelligent systems

Complicated knowledge databases
Natural language processing

Logic data analysis

CONCLUSIONS

Strengths:
Strong ties to formal logic

Many algorithms become trivially simple to
Implement

Weaknesses:
Complicated syntax
Difficult to understand programs at first sight

ISSUES

What applications can Prolog excel at?
Is Prolog suited for large applications?

Would binding the Prolog engine to another
language be a good idea?

FORWARD V/S BACKWARD CHAINING:

Infer means " to derive as a conclusion from facts or
premises".

There are 2 common rules for deriving new facts from
rules and known facts. These are

Modus Ponens and Modus Tollens.

7.1.1 MODUS PONENS

*most common inference strategy
*simple ,reaoning based on it is easily understood.

The rule states that when A i1s known to be true and if
arule states" If AthenB "
It Is valid to conclude that B is true.

7.1.2 MODUS TOLLENS

When B is false, rule If A, then B
then A Is false.

E.Q: Rule : IF Ahmet's CAR IS DIRTY
THEN Ahmet HAS BEEN DRIVING
OUTSIDE ANKARA

Given fact : Ahmet has not been outside Ankara.
New rule :Ahmet car is not dirty.

This conclusion seems quite obvious but cannot be
reached by most expert systems. Because they use
modus ponens for deriving new facts from rules.

Inference engine performs 2 major tasks:

1) examines existing facts and rules and adds new
facts when possible

2) decides the order in which inferences are made.

TWO REFERENCING METHODS:

o Forward Chaining
o Backward chaining

Forward chaining : also called data driven.
It starts with the facts, and sees what rules apply.
Backward chaining : also called goal driven.

It starts with something to find out, and looks for rules
that will help in answering it.

facts

Working Inference
Memory _ Engine

facts rules

F&B=-2Z F&B=Z

C&D="F || C& D==F
[] A==D A==0
Riles HRiles Riles

Problem: Does situation Z exists or not ?

FORWARD CHAINING ALGORITHM

Given m facts F,F,,....,F,? NRULES R ,R,,......R,
repeat for1 ?- 1 tondo

If one or more current facts match the antecedent of RI
then

1) add the new fact(s) define by the consequent
2) flag the rule that has been fired
3) increase m until no new facts have been produced.

until no new facts have been produced.

BACKWARD CHAINING:

With this inference method the system starts with what it
wants to prove, e.g.,that situation Z exists, and only
executes rules that are relavent to establishing it.

Figure following shows how bacward chaining would
work using the rules from the forward chaining example.

FACTY

Meed to

Get A

Stap o

not here
Fant

D here

F&h == 72
C&D —= F
A== 5

RULES

D

FACTY

A kere

&b —= 7

C&D —= F
A== D

RULES

Step 5

Fant A

FACTY

Step 6
Hava A
Exeacule
F&ER == 1
CE&D —=F
A== 0
RULES

N
Ll

FACTS

£ not here

Meed to

Fanut

£ hera

F&B == 7%
CE&D —=F
A== 1

RULES

FACTY

Step 2

RULES

FACTS

Step 2

C here

Faut

F&E —= 7
C&D —=F
A== 0N

RULES

FACTY

Step 7 Step &
Execute
Hi L - Exeacule
H::: D Have B Hove £
F&F == % F&B == % F&h —=7
- C&D —=F C&D —=F C&D == F
- A==D A—=D A—=D

RULES RULES RULES

BACKWARD CHAINING ALGORITHM:

I Prove goal G :
If G is in the initial facts , it is proven.

Otherwise, find a rule which can be used to
conclude G, and try to prove each of that rule's

conditions.

COMPONENT OF RULE BASED SYSTEM

Change -
Eu:md.lti::uns

Fules

Chsepved
Data

WORKING MEMORY:

@ Contains facts about the world

@ Can be observed directly or
derived from a rule

@ Contains temporary knowledge —

knowledge about this
problem-solving session

@ May be modified by the rules.

@ Traditionally stored as a <object,
attribute, values triplet

@ Examples:
@ <CAR, COLOR, REDs>: “The color
of my car is red’
@ <TEMPERATURE, OVER, 20>:
“The temperature is over 20 C”

amrad

g

I\

=
-

RULE BASE

@ Contains rules, each rule a step in a =
problem solving process. -

@ Rules are persistent knowledge
about the domain.

@ Typically only modified from the
outside of the system, e.g. by an
expert on the domain.

@ The

syntaxisa IF <conditions> THEN <actions>

format.
@ Examples:

@ The

IF «TEMEPEEATURE, OVEER, 20> THEN add (<=0CEAN, SWIMAELE, YES=)
IF <FEVER, OWVEER, 29> AND <NECK, STIFF, YES> AND <HEAD, PATHN, YES= THEN

add (<PATIENT, DIAGNOSE, MENINGITIS=)

conditions are matched to the working memory, and if

they are fulfilled, the rule may be fired.

RULE BASE (CONT...)

@ Actions can be:

@ Adding fact(s) to the working //y’;' -
memory. = . [
@ Removing fact(s) from the working D
memory
@ Modifying fact(s) in the working
memory.

@ Systems can allow variables in the rules.
@ Example:

@ IF <s$x, ISA, CAR=> AND <S$x, LIGHTS, DIM= THEN
add (<CHECK, BATTERY, $xX>)

@ Far more expressive rules — more computationally
expensive inference.

INTERPRETER

@ Is the (domain independent) - =
reasoning mechanism for . e
Rule-Based Systems. — -

@ Selects rule from the Rule Base to
apply.

@ The rules must match the current contents of the Working
Memory.

@ Applies the rule by performing the action.

INTERPRETER (CONT...)

The Interpreter operates on a cycle:

V
Retrieval: Finds the rules that . — |m

matches the current i
Working Memory. These
rules are the Conflict Set.
Reflnement: Prunes, reorders and resolves conflicts in the
Conflict Set.

Execution: Executes the actions of the rules in the Conflict
Set. Applies the rule by performing the action.

