

INTELLIGENT SYSTEMS (CSE-303-F)

Section A

PROLOG

OUTLINE

 What is Prolog?

 Language syntax

 Rules

 Questions

 Backtracking

 Conclusions

WHAT IS PROLOG?

 Logic programming is a programming language

paradigm in which logical assertions are viewed as

a program

 Prolog is described as a series of logical assertions

or it is a logic-based language

 With a few simple rules, information can be

analyzed.

 Representation in logic

 ∀ x : pet(x) Λ small (x) apartment(x)

 ∀ x : cat(x) ⋁ dog(x) pet(x)

 ∀ x : poodle(x) dog(x) Λ small(x)

 Poodle(abs)

 Representation in PROLOG

 Apartment (x) :- pet(x), small(x)

 Pet (x) :- dog (x)

 Dog (x) :- poodle (x)

 Small(x) :- poodle (x)

 Poodle(abs)

SYNTAX

 .pl files contain lists of clauses

Clauses can be either facts or rules

male(bob).

male(harry).

child(bob,harry).

son(X,Y):-

 male(X),child(X,Y).

Predicate, arity 1 (male/1)

Terminates a clause

Indicates a rule

“and”

Argument to predicate

RULES

 Rules combine facts to increase knowledge of the
system

son(X,Y):-

 male(X),child(X,Y).

 X is a son of Y if X is male and X is a child of Y

QUESTIONS

 In Prolog the queries are statements called directive
 Syntactically, directives are clauses with an empty

left-hand side.
Example : ? - grandparent(X, W).
This query is interpreted as : Who is a grandparent of

X ?

 The result of executing a query is either success or
failure

 Success, means the goals specified in the query
holds according to the facts and rules of the
program.

 Failure, means the goals specified in the query does
not hold according to the facts and rules of the
program

 Ask the Prolog virtual machine questions

 Composed at the ?- prompt

 Returns values of bound variables and yes or no

?- son(bob, harry).

yes

?- king(bob, france).

no

QUESTIONS [CONT’D]

Can bind answers to questions to variables

Who is bob the son of? (X=harry)

?- son(bob, X).

Who is male? (X=bob, harry)

?- male(X).

 Is bob the son of someone? (yes)

?- son(bob, _).

No variables bound in this case!

BACKTRACKING

 How are questions resolved?

?- son(X,harry).

 Recall the rule:

son(X,Y):-

 male(X),child(X,Y).

BACKTRACKING [CONT’D]

 Y is bound to the atom “harry” by the question.

male(X) child(X,Y)

X=harry
Y=harry

child(harry,harry)?

child(bob,harry)?
X=bob
Y=harry

no

yes - succeeds

APPLICATIONS

 Intelligent systems

 Complicated knowledge databases

 Natural language processing

 Logic data analysis

CONCLUSIONS

Strengths:

Strong ties to formal logic

Many algorithms become trivially simple to

implement

Weaknesses:

Complicated syntax

Difficult to understand programs at first sight

ISSUES

 What applications can Prolog excel at?

 Is Prolog suited for large applications?

 Would binding the Prolog engine to another

language be a good idea?

FORWARD V/S BACKWARD CHAINING:

 Infer means " to derive as a conclusion from facts or
premises".
 There are 2 common rules for deriving new facts from
rules and known facts.These are
 Modus Ponens and Modus Tollens.

 7.1.1 MODUS PONENS

 *most common inference strategy
 *simple ,reaoning based on it is easily understood.

 The rule states that when A is known to be true and if
a rule states " If A then B "
 it is valid to conclude that B is true.

 7.1.2 MODUS TOLLENS

 When B is false, rule If A, then B

 then A is false.

 E.g: Rule : IF Ahmet's CAR IS DIRTY

 THEN Ahmet HAS BEEN DRIVING

OUTSIDE ANKARA

 Given fact : Ahmet has not been outside Ankara.

 New rule : Ahmet car is not dirty.

 This conclusion seems quite obvious but cannot be

reached by most expert systems. Because they use

modus ponens for deriving new facts from rules.

 Inference engine performs 2 major tasks:

1) examines existing facts and rules and adds new

facts when possible

2) decides the order in which inferences are made.

TWO REFERENCING METHODS:

 Forward Chaining

 Backward chaining

 Forward chaining : also called data driven.

It starts with the facts, and sees what rules apply.

 Backward chaining : also called goal driven.

It starts with something to find out, and looks for rules

that will help in answering it.

Problem: Does situation Z exists or not ?

FORWARD CHAINING ALGORITHM

 Given m facts F1,F2,....,Fm? N RULES R1,R2,......Rn

 repeat for i ?- 1 to n do

 if one or more current facts match the antecedent of Ri

then

 1) add the new fact(s) define by the consequent

2) flag the rule that has been fired

3) increase m until no new facts have been produced.

until no new facts have been produced.

BACKWARD CHAINING:

 With this inference method the system starts with what it

wants to prove, e.g.,that situation Z exists, and only

executes rules that are relavent to establishing it.

Figure following shows how bacward chaining would

work using the rules from the forward chaining example.

BACKWARD CHAINING ALGORITHM:

‡ Prove goal G :

 If G is in the initial facts , it is proven.

 Otherwise, find a rule which can be used to

conclude G, and try to prove each of that rule's

conditions.

COMPONENT OF RULE BASED SYSTEM

WORKING MEMORY:

RULE BASE

RULE BASE (CONT…)

INTERPRETER

INTERPRETER (CONT…)

